Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240220, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654642

RESUMO

Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.


Assuntos
Mudança Climática , Ecossistema , Microbioma Gastrointestinal , Lagartos , Animais , Lagartos/fisiologia , Lagartos/microbiologia , Biodiversidade
2.
Evolution ; 77(7): 1634-1646, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37098894

RESUMO

Facing warming environments, species can exhibit plastic or microevolutionary changes in their thermal physiology to adapt to novel climates. Here, using semi-natural mesocosms, we experimentally investigated over two successive years whether a 2°C-warmer climate produces selective and inter- and intragenerational plastic changes in the thermal traits (preferred temperature and dorsal coloration) of the lizard Zootoca vivipara. In a warmer climate, the dorsal darkness, dorsal contrast, and preferred temperature of adults plastically decreased and covariances between these traits were disrupted. While selection gradients were overall weak, selection gradients for darkness were slightly different between climates and in the opposite direction to plastic changes. Contrary to adults, male juveniles were darker in warmer climates either through plasticity or selection and this effect was strengthened by intergenerational plasticity when juveniles' mothers also experienced warmer climates. While the plastic changes in adult thermal traits alleviate the immediate overheating costs of warming, its opposite direction to selective gradients and to juveniles' phenotypic responses may slow down evolutionary shifts toward phenotypes that are better adapted to future climates. Our study demonstrates the importance of considering inter- and intragenerational plasticity along with selective processes to better understand adaptation and population dynamics in light of climate change.


Assuntos
Lagartos , Animais , Masculino , Lagartos/genética , Adaptação Fisiológica/genética , Aclimatação , Temperatura , Mudança Climática
3.
Mol Ecol ; 32(12): 3060-3075, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872057

RESUMO

Although animal dispersal is known to play key roles in ecological and evolutionary processes such as colonization, population extinction and local adaptation, little is known about its genetic basis, particularly in vertebrates. Untapping the genetic basis of dispersal should deepen our understanding of how dispersal behaviour evolves, the molecular mechanisms that regulate it and link it to other phenotypic aspects in order to form the so-called dispersal syndromes. Here, we comprehensively combined quantitative genetics, genome-wide sequencing and transcriptome sequencing to investigate the genetic basis of natal dispersal in a known ecological and evolutionary model of vertebrate dispersal: the common lizard, Zootoca vivipara. Our study supports the heritability of dispersal in semi-natural populations, with less variation attributable to maternal and natal environment effects. In addition, we found an association between natal dispersal and both variation in the carbonic anhydrase (CA10) gene, and in the expression of several genes (TGFB2, SLC6A4, NOS1) involved in central nervous system functioning. These findings suggest that neurotransmitters (serotonin and nitric oxide) are involved in the regulation of dispersal and shaping dispersal syndromes. Several genes from the circadian clock (CRY2, KCTD21) were also differentially expressed between disperser and resident lizards, supporting that the circadian rhythm, known to be involved in long-distance migration in other taxa, might affect dispersal as well. Since neuronal and circadian pathways are relatively well conserved across vertebrates, our results are likely to be generalisable, and we therefore encourage future studies to further investigate the role of these pathways in shaping dispersal in vertebrates.


Assuntos
Evolução Biológica , Vertebrados , Animais , RNA-Seq , Síndrome , Distribuição Animal
4.
J Anim Ecol ; 91(11): 2301-2313, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131637

RESUMO

Contemporary climate change affects population dynamics, but its influence varies with landscape structure. It is still unclear whether landscape fragmentation buffers or amplifies the effects of climate on population size and the age and body size of individuals composing these populations. This study aims to investigate the impacts of warm climates on lizard life-history traits and population dynamics in habitats that vary in their connectivity. We monitored common lizard Zootoca vivipara populations for 3 years in an experimental system in which both climatic conditions and connectivity among habitats were simultaneously manipulated. We considered two climatic treatments (i.e. present-day climate and warm climate [+1.4°C than present-day climate]) and two connectivity treatments (i.e. a connected treatment in which individuals could move from one climate to the other and an isolated treatment in which movement between climates was not possible). We monitored survival, reproduction, growth, dispersal, age and body size of each individual in the system as well as population density through time. We found that the influence of warm climates on life-history traits and population dynamics depended on connectivity among thermal habitats. Populations in warm climates were (i) composed of younger individuals only when isolated; (ii) larger in population size only in connected habitats and (iii) composed of larger age-specific individuals independently of the landscape configuration. The connectivity among habitats altered population responses to climate warming likely through asymmetries in the flow and phenotype of dispersers between thermal habitats. Our results demonstrate that landscape fragmentation can drastically change the dynamics and persistence of populations facing climate change.


Le changement climatique actuel impacte la dynamique des populations, mais son influence varie avec la structure du paysage. A ce jour, il est difficile de prédire si la fragmentation du paysage réduit ou augmente les effets du réchauffement climatique sur la taille des populations, ainsi que sur l'âge et la taille corporelle des individus qui composent ces populations. Cette étude s'intéresse aux impacts d'un climat plus chaud sur les traits d'histoire de vie et la dynamique de populations vivant dans des habitats qui diffèrent quant à leur niveau de connectivité. Pendant trois ans, nous avons suivi des populations de lézards vivipares Zootoca vivipara au sein d'un dispositif expérimental qui permet de manipuler simultanément les conditions climatiques et le niveau de connectivité entre habitats. Nous avons considéré deux traitements climatiques [i.e., climat actuel et climat chaud (+1.4°C plus chaud que le climat actuel)] et deux traitements de connectivité (i.e., un traitement connecté au sein duquel les individus pouvaient se déplacer d'un climat à un autre, et un traitement isolé au sein duquel les déplacements entre climats n'étaient pas permis). Tout au long de l'expérience, nous avons mesuré la survie, la reproduction, la croissance, la dispersion, l'âge et la taille corporelle de chaque individu ainsi que la densité des populations. Nous avons observé que l'influence du climat chaud sur les traits d'histoire de vie et la dynamique de population dépendait du niveau de connectivité entre habitats. Les populations en climat chaud étaient composées (i) d'individus plus jeunes seulement en habitat isolé, (ii) de plus d'individus uniquement en habitat connecté et (iii) d'individus plus grands à âge égal et ce indépendamment de la configuration du paysage. Nos résultats montrent que le niveau de connectivité entre habitats altère les réponses des populations au réchauffement climatique via une asymétrie dans le flux et le phénotype des dispersants entre climats. Nos résultats démontrent que la fragmentation du paysage peut influencer de façon drastique la dynamique et la persistance des populations face au changement climatique.


Assuntos
Características de História de Vida , Lagartos , Animais , Ecossistema , Dinâmica Populacional , Mudança Climática , Lagartos/fisiologia
5.
Proc Biol Sci ; 286(1914): 20192227, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662087

RESUMO

Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.


Assuntos
Mudança Climática , Dieta , Cadeia Alimentar , Animais , Biodiversidade , Evolução Biológica , Comportamento Predatório
6.
Nat Ecol Evol ; 2(12): 1859-1863, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397298

RESUMO

Ecology and evolution unfold in spatially structured communities, where dispersal links dynamics across scales. Because dispersal is multicausal, identifying general drivers remains challenging. In a coordinated distributed experiment spanning organisms from protozoa to vertebrates, we tested whether two fundamental determinants of local dynamics, top-down and bottom-up control, generally explain active dispersal. We show that both factors consistently increased emigration rates and use metacommunity modelling to highlight consequences on local and regional dynamics.


Assuntos
Migração Animal , Ecossistema , Invertebrados/fisiologia , Vertebrados/fisiologia , Animais , Criptófitas/fisiologia , Hymenostomatida/fisiologia , Modelos Biológicos , Dinâmica Populacional
7.
Nat Ecol Evol ; 1(6): 161, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28812632

RESUMO

Climate change is now considered to be the greatest threat to biodiversity and ecological networks, but its impacts on the bacterial communities associated with plants and animals remain largely unknown. Here, we studied the consequences of climate warming on the gut bacterial communities of an ectotherm, the common lizard (Zootoca vivipara), using a semi-natural experimental approach. We found that 2-3 °C warmer climates cause a 34% loss of populations' microbiota diversity, with possible negative consequences for host survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...